Approachability of Convex Sets in "Some" Absorbing Games

Rida Laraki
CNRS, LAMSADE (Dauphine) and École Polytechnique

Joint work with

Janos Flesch and Vianney Perchet

Luchon, Janvier 7, 2016

- 1 Introduction to Blackwell Approachability
- Definitions and Notations
- Blackwell Type Conditions
 - Generalized Quitting Games
 - Application to Big Match Type 1
 - Application to Big Match Type 2
- 4 Viability Type Conditions in Big Match of Type 2
 - One absorbing action, one non-absorbing action
 - General Case

 Several multi-criteria robust optimization problems can be expressed as a repeated game between a decision maker and an adversary.

- Several multi-criteria robust optimization problems can be expressed as a repeated game between a decision maker and an adversary.
- At each stage t, the DM chooses an element $i_t \in I$, nature chooses a state $j_t \in J$, generating a sequence of outcomes $\{g_t = g(i_t, j_t)\}_{t=1}^{\infty}$.

- Several multi-criteria robust optimization problems can be expressed as a repeated game between a decision maker and an adversary.
- At each stage t, the DM chooses an element $i_t \in I$, nature chooses a state $j_t \in J$, generating a sequence of outcomes $\{g_t = g(i_t, j_t)\}_{t=1}^{\infty}$.
- Blackwell assumed that outcomes are vectorial payoffs $g_t \in \mathbb{R}^d$ and considers the problem where the DM aims to guarantee that the expected average payoff $\mathrm{E}[\frac{1}{T}\sum_{t=1}^T g(i_t,j_t)]$ approaches some convex target set $\mathcal{C} \subset \mathbb{R}^d$, for T large enough.

- Several multi-criteria robust optimization problems can be expressed as a repeated game between a decision maker and an adversary.
- At each stage t, the DM chooses an element $i_t \in I$, nature chooses a state $j_t \in J$, generating a sequence of outcomes $\{g_t = g(i_t, j_t)\}_{t=1}^{\infty}$.
- Blackwell assumed that outcomes are vectorial payoffs $g_t \in \mathbb{R}^d$ and considers the problem where the DM aims to guarantee that the expected average payoff $\mathrm{E}[\frac{1}{T}\sum_{t=1}^T g(i_t,j_t)]$ approaches some convex target set $\mathcal{C} \subset \mathbb{R}^d$, for T large enough.
- ullet He proved that a necessary and sufficient condition for a convex set ${\cal C}$ to be approachable is:

$$\forall y \in \Delta(I) \ \exists x \in \Delta(J): \ g(x,y) \in \mathcal{C} \iff \max_{y \in \Delta(J)} \min_{x \in \Delta(I)} d_{\mathcal{C}}(g(x,y)) = 0$$

- Several multi-criteria robust optimization problems can be expressed as a repeated game between a decision maker and an adversary.
- At each stage t, the DM chooses an element $i_t \in I$, nature chooses a state $j_t \in J$, generating a sequence of outcomes $\{g_t = g(i_t, j_t)\}_{t=1}^{\infty}$.
- Blackwell assumed that outcomes are vectorial payoffs $g_t \in \mathbb{R}^d$ and considers the problem where the DM aims to guarantee that the expected average payoff $\mathrm{E}[\frac{1}{T}\sum_{t=1}^T g(i_t,j_t)]$ approaches some convex target set $\mathcal{C} \subset \mathbb{R}^d$, for T large enough.
- ullet He proved that a necessary and sufficient condition for a convex set ${\cal C}$ to be approachable is:

$$\forall y \in \Delta(I) \ \exists x \in \Delta(J): \ g(x,y) \in \mathcal{C} \iff \max_{y \in \Delta(J)} \min_{x \in \Delta(I)} d_{\mathcal{C}}(g(x,y)) = 0$$

• Blackwell also proved that a convex set is either approchable or excludable.

 The first game theory application of Blackwell approchability is due to Aumann and Maschler.

- The first game theory application of Blackwell approchability is due to Aumann and Maschler.
- They use it to construct an optimal strategy for the uninformed player in repeated games with incomplete information.

- The first game theory application of Blackwell approchability is due to Aumann and Maschler.
- They use it to construct an optimal strategy for the uninformed player in repeated games with incomplete information.
- Approachability gained a lot of attention since then in economics, game theory, and machine learning.

- The first game theory application of Blackwell approchability is due to Aumann and Maschler.
- They use it to construct an optimal strategy for the uninformed player in repeated games with incomplete information.
- Approachability gained a lot of attention since then in economics, game theory, and machine learning.
- It is used, for example, to construct non regret or calibrated algorithms.

- The first game theory application of Blackwell approchability is due to Aumann and Maschler.
- They use it to construct an optimal strategy for the uninformed player in repeated games with incomplete information.
- Approachability gained a lot of attention since then in economics, game theory, and machine learning.
- It is used, for example, to construct non regret or calibrated algorithms.
- There is a formal equivalence between approachability, non-regret and calibration algorithms (Vianney Perchet's survey).

- The first game theory application of Blackwell approchability is due to Aumann and Maschler.
- They use it to construct an optimal strategy for the uninformed player in repeated games with incomplete information.
- Approachability gained a lot of attention since then in economics, game theory, and machine learning.
- It is used, for example, to construct non regret or calibrated algorithms.
- There is a formal equivalence between approachability, non-regret and calibration algorithms (Vianney Perchet's survey).
- Here are some papers that uses or extends approachability:

- The first game theory application of Blackwell approchability is due to Aumann and Maschler.
- They use it to construct an optimal strategy for the uninformed player in repeated games with incomplete information.
- Approachability gained a lot of attention since then in economics, game theory, and machine learning.
- It is used, for example, to construct non regret or calibrated algorithms.
- There is a formal equivalence between approachability, non-regret and calibration algorithms (Vianney Perchet's survey).
- Here are some papers that uses or extends approachability:

Vieille, [Hart & Mas-Colell], Spinat, Lehrer, Dawid, Renault & Tomala [As Soulaimani, Quincampoix & Sorin], Perchet, [Lehrer & Solan] Rakhlin, [Sridharan & Tewari], [Perchet & Quincampoix], Lovo, Horner & Tomala [Foster & Vohra], [Fudenberg & Levine], [Sandroni, Smorodinsky & Vohra] [Hart & Mas-Colell], [Cesa-Bianchi & Lugosi], [Benaim, Hofbauer & Sorin]

- 1 Introduction to Blackwell Approachability
- Definitions and Notations
- Blackwell Type Conditions
 - Generalized Quitting Games
 - Application to Big Match Type 1
 - Application to Big Match Type 2
- Viability Type Conditions in Big Match of Type 2
 - One absorbing action, one non-absorbing action
 - General Case

Examples

Our paper aims to extend Blackwell's condition to a subclass of absorbing games including:

Our paper aims to extend Blackwell's condition to a subclass of absorbing games including:

Big Match games of type I

$$\begin{array}{c|cc}
 & L & R \\
T & a^* & b^* \\
B & c & d
\end{array}$$

Our paper aims to extend Blackwell's condition to a subclass of absorbing games including:

Big Match games of type I

	L	R
Τ	a*	b*
В	С	d

Big Match games of type II

$$\begin{array}{c|cc}
L & R \\
\hline
a^* & b \\
\hline
c^* & d
\end{array}$$

Our paper aims to extend Blackwell's condition to a subclass of absorbing games including:

Big Match games of type I

	L	R
Τ	a*	b*
В	С	d

Big Match games of type II

$$\begin{array}{c|cccc}
L & R \\
T & a^* & b \\
B & c^* & d
\end{array}$$

Quitting Games

$$\begin{array}{c|ccc}
 & L & R \\
T & a^* & b^* \\
B & c^* & d
\end{array}$$

Sets of actions:

Pure actions of player 1 (the decision maker): $\mathbf{I} = \mathcal{I} \times \mathcal{I}^*$ Pure actions of player 2 (nature or advisory): $\mathbf{J} = \mathcal{J} \times \mathcal{J}^*$. Mixed actions of P1 $\mathbf{x} \in \Delta(\mathcal{I} \times \mathcal{I}^*)$, $\mathbf{x} \in \Delta(\mathcal{I})$, $\mathbf{x}^* \in \Delta(\mathcal{I}^*)$, Mixed actions of P2 $\mathbf{y} \in \Delta(\mathcal{I} \times \mathcal{I}^*)$, $\mathbf{y} \in \Delta(\mathcal{I})$, $\mathbf{y}^* \in \Delta(\mathcal{I}^*)$. Positive measures $\alpha \in \mathcal{M}(\mathbf{I})$ and $\beta \in \mathcal{M}(\mathbf{I})$.

Sets of actions:

Pure actions of player 1 (the decision maker): $\mathbf{I} = \mathcal{I} \times \mathcal{I}^*$ Pure actions of player 2 (nature or advisory): $\mathbf{J} = \mathcal{J} \times \mathcal{J}^*$. Mixed actions of P1 $\mathbf{x} \in \Delta(\mathcal{I} \times \mathcal{I}^*)$, $\mathbf{x} \in \Delta(\mathcal{I})$, $\mathbf{x}^* \in \Delta(\mathcal{I}^*)$, Mixed actions of P2 $\mathbf{y} \in \Delta(\mathcal{J} \times \mathcal{J}^*)$, $\mathbf{y} \in \Delta(\mathcal{I})$, $\mathbf{y}^* \in \Delta(\mathcal{I}^*)$. Positive measures $\alpha \in \mathcal{M}(\mathbf{I})$ and $\beta \in \mathcal{M}(\mathbf{I})$.

Vectorial payoffs

$$g(i,j) \in \mathbb{R}^d$$
, $\forall (i,j) \in (\mathbf{I},\mathbf{J})$.

Sets of actions:

Pure actions of player 1 (the decision maker): $\mathbf{I} = \mathcal{I} \times \mathcal{I}^*$ Pure actions of player 2 (nature or advisory): $\mathbf{J} = \mathcal{J} \times \mathcal{J}^*$. Mixed actions of P1 $\mathbf{x} \in \Delta(\mathcal{I} \times \mathcal{I}^*)$, $\mathbf{x} \in \Delta(\mathcal{I})$, $\mathbf{x}^* \in \Delta(\mathcal{I}^*)$, Mixed actions of P2 $\mathbf{y} \in \Delta(\mathcal{J} \times \mathcal{J}^*)$, $\mathbf{y} \in \Delta(\mathcal{I})$, $\mathbf{y}^* \in \Delta(\mathcal{I}^*)$. Positive measures $\alpha \in \mathcal{M}(\mathbf{I})$ and $\beta \in \mathcal{M}(\mathbf{I})$.

Vectorial payoffs

$$g(i,j) \in \mathbb{R}^d, \ \forall (i,j) \in (\mathbf{I},\mathbf{J}).$$

Target set (to be approached by player 1)

A closed and convex set $\mathcal{C} \subset \mathbb{R}^d$.

Sets of actions:

Pure actions of player 1 (the decision maker): $\mathbf{I} = \mathcal{I} \times \mathcal{I}^*$ Pure actions of player 2 (nature or advisory): $\mathbf{J} = \mathcal{J} \times \mathcal{J}^*$. Mixed actions of P1 $\mathbf{x} \in \Delta(\mathcal{I} \times \mathcal{I}^*)$, $\mathbf{x} \in \Delta(\mathcal{I})$, $\mathbf{x}^* \in \Delta(\mathcal{I}^*)$, Mixed actions of P2 $\mathbf{y} \in \Delta(\mathcal{J} \times \mathcal{J}^*)$, $\mathbf{y} \in \Delta(\mathcal{I})$, $\mathbf{y}^* \in \Delta(\mathcal{I}^*)$. Positive measures $\alpha \in \mathcal{M}(\mathbf{I})$ and $\beta \in \mathcal{M}(\mathbf{I})$.

Vectorial payoffs

$$g(i,j) \in \mathbb{R}^d, \forall (i,j) \in (\mathbf{I},\mathbf{J}).$$

Target set (to be approached by player 1)

A closed and convex set $\mathcal{C} \subset \mathbb{R}^d$.

Restrictions

If $\mathcal{J}^* = \emptyset$ then the game is a Big-match of type I. If $\mathcal{I}^* = \emptyset$ then the game is a Big-match of type II.

• The game is played in discrete time t = 1, 2, ...

- The game is played in discrete time t = 1, 2, ...
- At each stage t = 1, after observing past moves, simultaneously, player 1 chooses $i_t \in I$ and player 2 chooses $j_t \in J$.

- The game is played in discrete time t = 1, 2, ...
- At each stage t = 1, after observing past moves, simultaneously, player 1 chooses $i_t \in I$ and player 2 chooses $j_t \in J$.
- If $i_t \in \mathcal{I}^*$ or $j_t \in \mathcal{J}^*$, the game is absorbed: from stage t on, the vector payoff is $g_t = g(i_t, j_t)$.

- The game is played in discrete time t = 1, 2, ...
- At each stage t = 1, after observing past moves, simultaneously, player 1 chooses $i_t \in I$ and player 2 chooses $i_t \in J$.
- If $i_t \in \mathcal{I}^*$ or $j_t \in \mathcal{J}^*$, the game is absorbed: from stage t on, the vector payoff is $g_t = g(i_t, j_t)$.
- If $i_t \in \mathcal{I}$ and $j_t \in \mathcal{J}$, the game is not absorbed: the payoff of stage t is g_t , and we move to stage t + 1.

- The game is played in discrete time t = 1, 2, ...
- At each stage t = 1, after observing past moves, simultaneously, player 1 chooses $i_t \in I$ and player 2 chooses $i_t \in J$.
- If $i_t \in \mathcal{I}^*$ or $j_t \in \mathcal{J}^*$, the game is absorbed: from stage t on, the vector payoff is $g_t = g(i_t, j_t)$.
- If $i_t \in \mathcal{I}$ and $j_t \in \mathcal{J}$, the game is not absorbed: the payoff of stage t is g_t , and we move to stage t+1.
- Player 1 wants to approach the set C, player 2 wants to avoid C.

Uniform Approachability

 $\forall \varepsilon > 0$, player 1 has a strategy σ such that after some stage $T \in \mathbb{N}$, $\overline{g}_T = \mathbb{E}_{\sigma,\tau}[\frac{1}{T}\sum_{t=1}^T g_t]$ is ε -close to \mathcal{C} , no matter the strategy τ of player 2.

$$\forall arepsilon > 0, \exists \sigma, \exists T_{arepsilon} \in \mathbb{N}, orall T \geq T_{arepsilon}, orall \tau, d_{\mathcal{C}} \Big(\mathbb{E}_{\sigma, \tau} rac{1}{T} \sum_{t=1}^{T} g(i_{t}, j_{t}) \Big) \leq arepsilon.$$

Uniform Approachability

 $\forall \varepsilon > 0$, player 1 has a strategy σ such that after some stage $T \in \mathbb{N}$, $\overline{g}_T = \mathbb{E}_{\sigma,\tau}[\frac{1}{T}\sum_{t=1}^T g_t]$ is ε -close to \mathcal{C} , no matter the strategy τ of player 2.

$$\forall \varepsilon > 0, \exists \sigma, \exists T_{\varepsilon} \in \mathbb{N}, \forall T \geq T_{\varepsilon}, \forall \tau, d_{\mathcal{C}} \Big(\mathbb{E}_{\sigma, \tau} \frac{1}{T} \sum_{t=1}^{T} g(i_{t}, j_{t}) \Big) \leq \varepsilon.$$

 ${\mathcal C}$ is excludable if player 2 can approach the complement of some δ neighborhood of ${\mathcal C}.$

Uniform Approachability

 $\forall \varepsilon > 0$, player 1 has a strategy σ such that after some stage $T \in \mathbb{N}$, $\overline{g}_T = \mathbb{E}_{\sigma,\tau}[\frac{1}{T}\sum_{t=1}^T g_t]$ is ε -close to \mathcal{C} , no matter the strategy τ of player 2.

$$orall arepsilon > 0, \exists \sigma, \exists T_arepsilon \in \mathbb{N}, orall T \geq T_arepsilon, orall au, d_\mathcal{C} \Big(\mathbb{E}_{\sigma, au} rac{1}{T} \sum_{t=1}^T g(i_t, j_t) \Big) \leq arepsilon.$$

 ${\mathcal C}$ is excludable if player 2 can approach the complement of some δ neighborhood of ${\mathcal C}.$

Weak Approachability

$$orall arepsilon > 0, \exists \, \mathcal{T}_arepsilon \in \mathbb{N}, orall \, \mathcal{T} \geq \, \mathcal{T}_arepsilon, \exists \, \sigma_{\mathcal{T}}, orall au, \, d_{\mathcal{C}} \Big(\mathbb{E}_{\sigma_{\mathcal{T}}, au} rac{1}{\mathcal{T}} \sum_{t=1}^{\mathcal{T}} g(i_t, j_t) \Big) \leq arepsilon$$

Uniform Approachability

 $\forall \varepsilon > 0$, player 1 has a strategy σ such that after some stage $T \in \mathbb{N}$, $\overline{g}_T = \mathbb{E}_{\sigma,\tau}[\frac{1}{T}\sum_{t=1}^T g_t]$ is ε -close to \mathcal{C} , no matter the strategy τ of player 2.

$$orall arepsilon > 0, \exists \sigma, \exists T_arepsilon \in \mathbb{N}, orall T \geq T_arepsilon, orall au, d_\mathcal{C} \Big(\mathbb{E}_{\sigma, au} rac{1}{T} \sum_{t=1}^T g(i_t, j_t) \Big) \leq arepsilon.$$

 ${\mathcal C}$ is excludable if player 2 can approach the complement of some δ neighborhood of ${\mathcal C}.$

Weak Approachability

$$orall arepsilon > 0, \exists \mathit{T}_arepsilon \in \mathbb{N}, orall \mathit{T} \geq \mathit{T}_arepsilon, \exists \mathit{\sigma}_{\mathit{T}}, orall \mathit{\tau}, \mathit{d}_\mathcal{C} \Big(\mathbb{E}_{\sigma_{\mathit{T}}, \mathit{\tau}} rac{1}{\mathit{T}} \sum_{t=1}^{\mathit{T}} g(i_t, j_t) \Big) \leq arepsilon$$

We will study the following stronger notion:

$$\begin{aligned} \forall \varepsilon > 0, \ \exists \theta_{\varepsilon} > 0 \text{ s.t. } \forall \theta = \{\theta_{s}\}_{s \in \mathbb{N}^{*}} \in \Delta(\mathbb{N}^{*}) \text{ satisfying} \\ \|\theta\|_{2} \leq \theta_{\varepsilon}, \ \exists \sigma, \ \forall \tau \ d_{\mathcal{C}} \Big(\mathbb{E}_{\sigma, \tau} \big[\sum_{t=1}^{\infty} \theta_{t} g_{t} \big] \Big) \leq \varepsilon. \end{aligned}$$

Examples

In this game $\mathcal{C}=\{0\}$ is weakly approachable and

In this game $\mathcal{C} = \{0\}$ is weakly approachable and not uniformly approachable.

$$\begin{array}{c|cccc} & L & R \\ T & 1^* & 0^* \\ B & 0 & -1 \end{array}$$

Examples

In this game $\mathcal{C}=\{0\}$ is weakly approachable and not uniformly approachable.

$$\begin{array}{c|cc}
L & R \\
T & 1^* & 0^* \\
B & 0 & -1
\end{array}$$

In this game $\mathcal{C} = \{0\}$ is not weakly approachable.

$$\begin{array}{c|cc}
L & R \\
T & 1^* & 0 \\
B & 0^* & -1
\end{array}$$

Examples

In this game $\mathcal{C} = \{0\}$ is weakly approachable and not uniformly approachable.

$$\begin{array}{c|cc}
L & R \\
T & 1^* & 0^* \\
B & 0 & -1
\end{array}$$

In this game $\mathcal{C} = \{0\}$ is not weakly approachable.

$$\begin{array}{c|ccc}
L & R \\
T & 1^* & 0 \\
B & 0^* & -1
\end{array}$$

In this game $C = \{0\}$ is not weakly (nor uniformly) approachable, and not weakly (nor uniformly) excludable.

$$\begin{array}{c|cc}
L & R \\
T & 1^* & 0^* \\
B & 0^* & -1^*
\end{array}$$

Examples

In this game $\mathcal{C}=\{0\}$ is weakly approachable and not uniformly approachable.

$$\begin{array}{c|cccc}
 & L & R \\
T & 1^* & 0^* \\
B & 0 & -1 \\
\end{array}$$

In this game $C = \{0\}$ is not weakly approachable.

$$\begin{array}{c|ccc}
L & R \\
T & 1^* & 0 \\
B & 0^* & -1
\end{array}$$

In this game $C = \{0\}$ is not weakly (nor uniformly) approachable, and not weakly (nor uniformly) excludable.

$$\begin{array}{c|ccc}
L & R \\
T & 1^* & 0^* \\
B & 0^* & -1^*
\end{array}$$

Blackwell condition holds:

$$\forall \mathbf{y} = qL + (1-q)R, \exists \mathbf{x} = (1-q)T + qB : g(\mathbf{x}, \mathbf{y}) = 0$$

- 1 Introduction to Blackwell Approachability
- Definitions and Notations
- Blackwell Type Conditions
 - Generalized Quitting Games
 - Application to Big Match Type 1
 - Application to Big Match Type 2
- Viability Type Conditions in Big Match of Type 2
 - One absorbing action, one non-absorbing action
 - General Case

Notations

• g is extended multi-linearly to the set of measures on $\mathcal{M}(\mathbf{J})$ and $\mathcal{M}(\mathbf{J})$:

$$g(\alpha, \beta) = \sum_{i \in \mathbf{I}, j \in \mathbf{J}} \alpha_i \beta_j g(i, j).$$

Notations

• g is extended multi-linearly to the set of measures on $\mathcal{M}(\mathbf{I})$ and $\mathcal{M}(\mathbf{J})$:

$$g(\alpha, \beta) = \sum_{i \in \mathbf{I}, j \in \mathbf{J}} \alpha_i \beta_j g(i, j).$$

 We also extend the probability of absorption and the expected absorption payoffs:

$$p^{\star}(\alpha,\beta) = \sum_{i \in I} \alpha_i \beta_j - \sum_{i \notin \mathcal{I}^{\star}} \sum_{i \notin \mathcal{I}^{\star}} \alpha_i \beta_j$$

and

$$g^{\star}(\alpha, \beta) = g(\alpha, \beta) - \sum_{i \neq T^{\star}} \sum_{j \neq T^{\star}} \alpha_{i} \beta_{j} g(i, j).$$

The Conditions

Sufficient condition : SC

$$\max_{\mathbf{y} \in \Delta(\mathbf{J})} \inf_{\mathbf{x} \in \Delta(\mathbf{I})} \inf_{\alpha \in \mathcal{M}(\mathbf{I})} \sup_{\beta \in \mathcal{M}(\mathbf{J})} d_{\mathcal{C}}\Big(\frac{g(\mathbf{x}, \mathbf{y}) + g^{\star}(\alpha, \mathbf{y}) + g^{\star}(\mathbf{x}, \beta)}{1 + \rho^{\star}(\alpha, \mathbf{y}) + \rho^{\star}(\mathbf{x}, \beta)}\Big) = 0 \quad (1)$$

The Conditions

Sufficient condition : SC

$$\max_{\mathbf{y} \in \Delta(\mathbf{J})} \inf_{\mathbf{x} \in \Delta(\mathbf{I})} \inf_{\alpha \in \mathcal{M}(\mathbf{I})} \sup_{\beta \in \mathcal{M}(\mathbf{J})} d_{\mathcal{C}}\Big(\frac{g(\mathbf{x}, \mathbf{y}) + g^{\star}(\alpha, \mathbf{y}) + g^{\star}(\mathbf{x}, \beta)}{1 + \rho^{\star}(\alpha, \mathbf{y}) + \rho^{\star}(\mathbf{x}, \beta)}\Big) = 0 \quad (1)$$

Non-necessary, non-sufficient condition:

$$\max_{\mathbf{y} \in \Delta(\mathbf{J})} \min_{\mathbf{x} \in \Delta(\mathbf{I})} \sup_{\beta \in \mathcal{M}(\mathbf{J})} \inf_{\alpha \in \mathcal{M}(\mathbf{I})} d_{\mathcal{C}}\left(\frac{g(\mathbf{x}, \mathbf{y}) + g^{\star}(\alpha, \mathbf{y}) + g^{\star}(\mathbf{x}, \beta)}{1 + p^{\star}(\alpha, \mathbf{y}) + p^{\star}(\mathbf{x}, \beta)}\right) = 0 \quad (2)$$

The Conditions

Sufficient condition : SC

$$\max_{\mathbf{y} \in \Delta(\mathbf{J})} \inf_{\mathbf{x} \in \Delta(\mathbf{I})} \inf_{\alpha \in \mathcal{M}(\mathbf{I})} \sup_{\beta \in \mathcal{M}(\mathbf{J})} d_{\mathcal{C}} \Big(\frac{g(\mathbf{x}, \mathbf{y}) + g^{\star}(\alpha, \mathbf{y}) + g^{\star}(\mathbf{x}, \beta)}{1 + p^{\star}(\alpha, \mathbf{y}) + p^{\star}(\mathbf{x}, \beta)} \Big) = 0 \quad (1)$$

Non-necessary, non-sufficient condition:

$$\max_{\mathbf{y} \in \Delta(\mathbf{J})} \min_{\mathbf{x} \in \Delta(\mathbf{I})} \sup_{\beta \in \mathcal{M}(\mathbf{J})} \inf_{\alpha \in \mathcal{M}(\mathbf{I})} d_{\mathcal{C}} \left(\frac{g(\mathbf{x}, \mathbf{y}) + g^{\star}(\alpha, \mathbf{y}) + g^{\star}(\mathbf{x}, \beta)}{1 + p^{\star}(\alpha, \mathbf{y}) + p^{\star}(\mathbf{x}, \beta)} \right) = 0 \quad (2)$$

Necessary condition: NC

$$\max_{\mathbf{y} \in \Delta(\mathbf{J})} \sup_{\beta \in \mathcal{M}(\mathbf{J})} \min_{\mathbf{x} \in \Delta(\mathbf{I})} \inf_{\alpha \in \mathcal{M}(\mathbf{I})} d_{\mathcal{C}} \left(\frac{g(\mathbf{x}, \mathbf{y}) + g^{\star}(\alpha, \mathbf{y}) + g^{\star}(\mathbf{x}, \beta)}{1 + p^{\star}(\alpha, \mathbf{y}) + p^{\star}(\mathbf{x}, \beta)} \right) = 0 \quad (3)$$

Main Results for Weak Approachability

Theorem

SC (condition 1) is sufficient for W-approachability.
NC (condition 3) is necessary for W-approachability.
Condition 2 is neither necessary nor sufficient for W-approachability.

Main Results for Weak Approachability

Theorem

SC (condition 1) is sufficient for W-approachability. NC (condition 3) is necessary for W-approachability. Condition 2 is neither necessary nor sufficient for W-approachability.

Lemma

Condition SC is equivalent to

(1)
$$\exists (x_0, x_0^*, \gamma_0) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times (0, 1]$$
 such that

$$g(x_0^*, j) \in \mathcal{C}, \ \forall j \in \mathcal{J}$$

and $g((1 - \gamma_0)x_0 + \gamma_0x_0^*, j^*) \in \mathcal{C}, \forall j^* \in \mathcal{J}^*$

or

(2)
$$\forall \varepsilon, \ \forall y \in \Delta(\mathcal{J}), \exists (x, x^*, \gamma) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times [0, 1]$$
 such that:

$$g((1-\gamma)x + \gamma x^*, y) \in \mathcal{C} + \varepsilon \mathcal{B}(0, 1)$$

and $g(x, j^*) \in \mathcal{C} + \varepsilon \mathcal{B}(0, 1), \forall j^* \in \mathcal{J}^*$

$$\exists (x_0, x_0^*, \gamma_0) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times (0, 1]$$
 such that $g(x_0^*, j) \in \mathcal{C}, \ \forall j \in \mathcal{J}$ and $g((1 - \gamma_0)x_0 + \gamma_0x_0^*, j^*) \in \mathcal{C}, \forall j^* \in \mathcal{J}^*$

Suppose SC is:

$$\exists (x_0, x_0^*, \gamma_0) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times (0, 1]$$
 such that
$$g(x_0^*, j) \in \mathcal{C}, \ \forall j \in \mathcal{J}$$
 and $g((1 - \gamma_0)x_0 + \gamma_0x_0^*, j^*) \in \mathcal{C}, \forall j^* \in \mathcal{J}^*$

• Player 1 play i.i.d according to $(1 - \gamma_0)x_0 + \gamma_0x_0^* \in \Delta(I)$.

$$\exists (x_0, x_0^*, \gamma_0) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times (0, 1]$$
 such that $g(x_0^*, j) \in \mathcal{C}, \ \forall j \in \mathcal{J}$ and $g((1 - \gamma_0)x_0 + \gamma_0x_0^*, j^*) \in \mathcal{C}, \forall j^* \in \mathcal{J}^*$

- Player 1 play i.i.d according to $(1 \gamma_0)x_0 + \gamma_0x_0^* \in \Delta(I)$.
- The game is absorbed at each stage with proba γ_0 or 1 (depending on P2).

$$\exists (x_0, x_0^*, \gamma_0) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times (0, 1]$$
 such that $g(x_0^*, j) \in \mathcal{C}, \ \forall j \in \mathcal{J}$ and $g((1 - \gamma_0)x_0 + \gamma_0x_0^*, j^*) \in \mathcal{C}, \forall j^* \in \mathcal{J}^*$

- Player 1 play i.i.d according to $(1 \gamma_0)x_0 + \gamma_0x_0^* \in \Delta(I)$.
- The game is absorbed at each stage with proba γ_0 or 1 (depending on P2).
- By condition SC, if the game is absorbed, the payoff is necessarily in C.

$$\exists (x_0, x_0^*, \gamma_0) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times (0, 1]$$
 such that $g(x_0^*, j) \in \mathcal{C}, \ \forall j \in \mathcal{J}$ and $g((1 - \gamma_0)x_0 + \gamma_0x_0^*, j^*) \in \mathcal{C}, \forall j^* \in \mathcal{J}^*$

- Player 1 play i.i.d according to $(1 \gamma_0)x_0 + \gamma_0x_0^* \in \Delta(I)$.
- The game is absorbed at each stage with proba γ_0 or 1 (depending on P2).
- By condition SC, if the game is absorbed, the payoff is necessarily in C.
- Consequently.

$$d\left(\mathbb{E}\left[\overline{g}_{\theta}\right],\mathcal{C}\right) \leq \sum_{s=1}^{\infty} (1-\gamma_0)^s \theta_s M \leq \frac{1-\gamma_0}{\sqrt{2\gamma_0-\gamma_0^2}} \|\theta\|_2 M$$

$$\begin{split} \forall \varepsilon, \ \forall y \in \Delta(\mathcal{J}), \exists (x, x^*, \gamma) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times [0, 1] \text{ such that:} \\ (1 - \gamma) g(x, y) + \gamma g(x^*, y) \in \mathcal{C} + \varepsilon \mathcal{B}(0, 1) \\ \text{and } g(x, j^*) \in \mathcal{C} + \varepsilon \mathcal{B}(0, 1), \forall j^* \in \mathcal{J}^* \end{split}$$

Suppose SC is:

$$\forall \varepsilon, \ \forall y \in \Delta(\mathcal{J}), \exists (x, x^*, \gamma) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times [0, 1] \text{ such that:}$$

$$(1 - \gamma)g(x, y) + \gamma g(x^*, y) \in \mathcal{C} + \varepsilon \mathcal{B}(0, 1)$$
 and
$$g(x, j^*) \in \mathcal{C} + \varepsilon \mathcal{B}(0, 1), \forall j^* \in \mathcal{J}^*$$

• The strategy of player 1 is based on calibration (see Perchet, 2009).

$$\forall \varepsilon, \ \forall y \in \Delta(\mathcal{J}), \exists (x, x^*, \gamma) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times [0, 1] \text{ such that:}$$

$$(1 - \gamma)g(x, y) + \gamma g(x^*, y) \in \mathcal{C} + \varepsilon \mathcal{B}(0, 1)$$

and $g(x, j^*) \in \mathcal{C} + \varepsilon \mathcal{B}(0, 1), \forall j^* \in \mathcal{J}^*$

- The strategy of player 1 is based on calibration (see Perchet, 2009).
- Player 1 predicts, stage by stage, y and plays a response using SC.

$$\forall \varepsilon, \ \forall y \in \Delta(\mathcal{J}), \exists (x, x^*, \gamma) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times [0, 1] \text{ such that:}$$

$$(1 - \gamma)g(x, y) + \gamma g(x^*, y) \in \mathcal{C} + \varepsilon \mathcal{B}(0, 1)$$

and $g(x, j^*) \in \mathcal{C} + \varepsilon \mathcal{B}(0, 1), \forall j^* \in \mathcal{J}^*$

- The strategy of player 1 is based on calibration (see Perchet, 2009).
- Player 1 predicts, stage by stage, y and plays a response using SC.
- Let $\big\{y[k], k \in \{1, \dots, K\}\big\}$ be a finite ε -discretization of $\Delta(\mathcal{J})$.

$$\forall \varepsilon, \ \forall y \in \Delta(\mathcal{J}), \exists (x, x^*, \gamma) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times [0, 1] \text{ such that:}$$

$$(1 - \gamma)g(x, y) + \gamma g(x^*, y) \in \mathcal{C} + \varepsilon \mathcal{B}(0, 1)$$

and $g(x, j^*) \in \mathcal{C} + \varepsilon \mathcal{B}(0, 1), \forall j^* \in \mathcal{J}^*$

- The strategy of player 1 is based on calibration (see Perchet, 2009).
- Player 1 predicts, stage by stage, y and plays a response using SC.
- Let $\Big\{y[k], k \in \{1, \dots, K\}\Big\}$ be a finite ε -discretization of $\Delta(\mathcal{J})$.
- By SC, for each y[k], we may associate $(x[k], x^*[k], \gamma[k])$.

Suppose SC is:

 $\forall \varepsilon, \ \forall y \in \Delta(\mathcal{J}), \exists (x, x^*, \gamma) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times [0, 1] \text{ such that:}$

$$(1 - \gamma)g(x, y) + \gamma g(x^*, y) \in \mathcal{C} + \varepsilon \mathcal{B}(0, 1)$$
 and $g(x, j^*) \in \mathcal{C} + \varepsilon \mathcal{B}(0, 1), \forall j^* \in \mathcal{J}^*$

- The strategy of player 1 is based on calibration (see Perchet, 2009).
- Player 1 predicts, stage by stage, y and plays a response using SC.
- Let $\Big\{y[k], k \in \{1, \dots, K\}\Big\}$ be a finite ε -discretization of $\Delta(\mathcal{J})$.
- By SC, for each y[k], we may associate $(x[k], x^*[k], \gamma[k])$.
- ullet The strategy of player 1 at stage au (history dependent) is defined as:

$$\gamma_{\tau}[k_{\tau}]x^*[k_{\tau}] + (1 - \gamma_{\tau}[k_{\tau}])x[k]$$

where:

$$\gamma_{\tau}[k_{\tau}] := \frac{\gamma[k_{\tau}]\theta_{\tau}}{(1 - \gamma[k_{\tau}])\sum_{s=\tau}^{\infty}\theta_{s} + \gamma[k_{\tau}]\theta_{\tau}}$$

Necessary Condition

Condition NC (condition 3)

$$\max_{\mathbf{y} \in \Delta(\mathbf{J})} \sup_{\beta \in \mathcal{M}(\mathbf{J})} \min_{\mathbf{x} \in \Delta(\mathbf{I})} \inf_{\alpha \in \mathcal{M}(\mathbf{I})} d_{\mathcal{C}} \Big(\frac{g(\mathbf{x}, \mathbf{y}) + g^{\star}(\alpha, \mathbf{y}) + g^{\star}(\mathbf{x}, \beta)}{1 + p^{\star}(\alpha, \mathbf{y}) + p^{\star}(\mathbf{x}, \beta)} \Big) = 0$$

Necessary Condition

Condition NC (condition 3)

$$\max_{\mathbf{y} \in \Delta(\mathbf{J})} \sup_{\beta \in \mathcal{M}(\mathbf{J})} \min_{\mathbf{x} \in \Delta(\mathbf{I})} \inf_{\alpha \in \mathcal{M}(\mathbf{I})} d_{\mathcal{C}} \Big(\frac{g(\mathbf{x}, \mathbf{y}) + g^{\star}(\alpha, \mathbf{y}) + g^{\star}(\mathbf{x}, \beta)}{1 + p^{\star}(\alpha, \mathbf{y}) + p^{\star}(\mathbf{x}, \beta)} \Big) = 0$$

Theorem

NC is necessary for weak approachability in generalized quitting games.

Necessary Condition

Condition NC (condition 3)

$$\max_{\mathbf{y} \in \Delta(\mathbf{J})} \sup_{\beta \in \mathcal{M}(\mathbf{J})} \min_{\mathbf{x} \in \Delta(\mathbf{I})} \inf_{\alpha \in \mathcal{M}(\mathbf{I})} d_{\mathcal{C}} \Big(\frac{g(\mathbf{x}, \mathbf{y}) + g^{\star}(\alpha, \mathbf{y}) + g^{\star}(\mathbf{x}, \beta)}{1 + p^{\star}(\alpha, \mathbf{y}) + p^{\star}(\mathbf{x}, \beta)} \Big) = 0$$

Theorem

NC is necessary for weak approachability in generalized quitting games.

If not, player 2 just play at every stage y perturbed by $\beta.$ This allows him to exclude $\mathcal{C}.$

Lemma

In Big-Match of type I, SC and NC are equivalent to Blackwell condition:

$$\forall y \in \Delta(J), \exists x \in \Delta(I), g(x, y) \in C$$

Lemma

In Big-Match of type I, SC and NC are equivalent to Blackwell condition:

$$\forall y \in \Delta(J), \exists x \in \Delta(I), g(x, y) \in C$$

which also reads, equivalently, as

$$\forall y \in \Delta(\mathcal{J}), \exists (x, x^*, \gamma) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times [0, 1], (1 - \gamma)g(x, y) + \gamma g(x^*, y) \in \mathcal{C}$$

Lemma

In Big-Match of type I, SC and NC are equivalent to Blackwell condition:

$$\forall y \in \Delta(J), \exists x \in \Delta(I), g(x, y) \in C$$

which also reads, equivalently, as

$$\forall y \in \Delta(\mathcal{J}), \exists (x, x^*, \gamma) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times [0, 1], (1 - \gamma)g(x, y) + \gamma g(x^*, y) \in \mathcal{C}.$$

Against a prediction $y \in \Delta(\mathcal{J})$, play $x \in \Delta(\mathcal{I})$ "perturbed" by $x^* \in \Delta(\mathcal{I}^*)$.

Lemma

In Big-Match of type I, SC and NC are equivalent to Blackwell condition:

$$\forall y \in \Delta(J), \exists x \in \Delta(I), g(x, y) \in C$$

which also reads, equivalently, as

$$\forall y \in \Delta(\mathcal{J}), \exists (x, x^*, \gamma) \in \Delta(\mathcal{I}) \times \Delta(\mathcal{I}^*) \times [0, 1], (1 - \gamma)g(x, y) + \gamma g(x^*, y) \in \mathcal{C}.$$

Against a prediction $y \in \Delta(\mathcal{J})$, play $x \in \Delta(\mathcal{I})$ "perturbed" by $x^* \in \Delta(\mathcal{I}^*)$.

$\mathsf{Theorem}$

Blackwell condition is necessary and sufficient for weak approachability in BM games of type 1.

Introduction to Blackwell Approachability Definitions and Notati Generalized Quitting Games Application to Big Match Type 1

Uniform Approachability in Big Match Type 1

Theorem

Blackwell condition is not sufficient for uniform approachability in BM of type 1.

Theorem

Blackwell condition is not sufficient for uniform approachability in BM of type 1.

Here, Blackwell condition is satisfied for $C = \{0\}$.

$$\begin{array}{c|cccc}
 & L & R \\
T & 1^* & 0^* \\
B & 0 & -1
\end{array}$$

Theorem

Blackwell condition is not sufficient for uniform approachability in BM of type 1.

Here, Blackwell condition is satisfied for $C = \{0\}$.

$$\begin{array}{c|cccc}
 & L & R \\
T & 1^* & 0^* \\
B & 0 & -1
\end{array}$$

But, $\forall \sigma$ for P1, $\exists \tau$ for P2 such that $u(\sigma, \tau) \notin [-\frac{1}{10}, \frac{1}{10}]$:

Theorem

Blackwell condition is not sufficient for uniform approachability in BM of type 1.

Here, Blackwell condition is satisfied for $C = \{0\}$.

$$\begin{array}{c|ccc}
L & R \\
T & 1^* & 0^* \\
B & 0 & -1
\end{array}$$

But, $\forall \sigma$ for P1, $\exists \tau$ for P2 such that $u(\sigma, \tau) \notin [-\frac{1}{10}, \frac{1}{10}]$:

• Let τ be the stationary strategy for P2 which plays $(\frac{1}{2}, \frac{1}{2})$ at every period.

Theorem

Blackwell condition is not sufficient for uniform approachability in BM of type 1.

Here, Blackwell condition is satisfied for $C = \{0\}$.

$$\begin{array}{c|cccc}
 & L & R \\
T & 1^* & 0^* \\
B & 0 & -1 \\
\end{array}$$

But, $\forall \sigma$ for P1, $\exists \tau$ for P2 such that $u(\sigma, \tau) \notin [-\frac{1}{10}, \frac{1}{10}]$:

- Let τ be the stationary strategy for P2 which plays $(\frac{1}{2}, \frac{1}{2})$ at every period.
- If $u(\sigma, \tau) < -\frac{1}{10}$ then we are done.

Theorem

Blackwell condition is not sufficient for uniform approachability in BM of type 1.

Here, Blackwell condition is satisfied for $C = \{0\}$.

$$\begin{array}{c|ccc}
L & R \\
T & 1^* & 0^* \\
B & 0 & -1
\end{array}$$

But, $\forall \sigma$ for P1, $\exists \tau$ for P2 such that $u(\sigma, \tau) \notin [-\frac{1}{10}, \frac{1}{10}]$:

- Let τ be the stationary strategy for P2 which plays $(\frac{1}{2}, \frac{1}{2})$ at every period.
- If $u(\sigma, \tau) < -\frac{1}{10}$ then we are done.
- Denote by q^* the probability, that play eventually absorbs. Since

$$u(\sigma,\tau) = \frac{1}{2}q^* - \frac{1}{2}(1-q^*) = q^* - \frac{1}{2},$$

we have

$$q^* \ge -\frac{1}{10} + \frac{1}{2} = \frac{4}{10}$$
.

Theorem

Blackwell condition is not sufficient for uniform approachability in BM of type 1.

Here, Blackwell condition is satisfied for $C = \{0\}$.

$$\begin{array}{c|cccc}
 & L & R \\
T & 1^* & 0^* \\
B & 0 & -1
\end{array}$$

But, $\forall \sigma$ for P1, $\exists \tau$ for P2 such that $u(\sigma, \tau) \notin [-\frac{1}{10}, \frac{1}{10}]$:

- Let τ be the stationary strategy for P2 which plays $(\frac{1}{2}, \frac{1}{2})$ at every period.
- If $u(\sigma, \tau) < -\frac{1}{10}$ then we are done.
- Denote by q^* the probability, that play eventually absorbs. Since

$$u(\sigma,\tau) = \frac{1}{2}q^* - \frac{1}{2}(1-q^*) = q^* - \frac{1}{2},$$

we have

$$q^* \ge -\frac{1}{10} + \frac{1}{2} = \frac{4}{10}$$
.

• Take t large so that the proba q_t that play absorbs before t is at least $\frac{3}{10}$.

Theorem

Blackwell condition is not sufficient for uniform approachability in BM of type 1.

Here, Blackwell condition is satisfied for $C = \{0\}$.

$$\begin{array}{c|cccc}
 & L & R \\
T & 1^* & 0^* \\
B & 0 & -1 \\
\end{array}$$

But, $\forall \sigma$ for P1, $\exists \tau$ for P2 such that $u(\sigma, \tau) \notin [-\frac{1}{10}, \frac{1}{10}]$:

- Let τ be the stationary strategy for P2 which plays $(\frac{1}{2}, \frac{1}{2})$ at every period.
- If $u(\sigma, \tau) < -\frac{1}{10}$ then we are done.
- Denote by q^* the probability, that play eventually absorbs. Since

$$u(\sigma,\tau) = \frac{1}{2}q^* - \frac{1}{2}(1-q^*) = q^* - \frac{1}{2},$$

we have

$$q^* \ge -\frac{1}{10} + \frac{1}{2} = \frac{4}{10}$$
.

- Take t large so that the proba q_t that play absorbs before t is at least $\frac{3}{10}$.
- Let τ' the strategy $(\frac{1}{2}, \frac{1}{2})$ at all periods before period t and L after. Then

$$u(\sigma,\tau')\geq \tfrac{1}{2}q_t\geq \tfrac{3}{20}>\tfrac{1}{10},$$

Theorem

In BM games of type 1, a convex set is either W-approachable or W-excludable.

Theorem

In BM games of type 1, a convex set is either W-approachable or W-excludable.

Theorem (Sorin 1982, unpublished)

In BM games of type 1, there are convex sets that are neither uniformly approachable, nor uniformly excludable.

Theorem

In BM games of type 1, a convex set is either W-approachable or W-excludable.

Theorem (Sorin 1982, unpublished)

In BM games of type 1, there are convex sets that are neither uniformly approachable, nor uniformly excludable.

Sorin example lies in \mathbb{R}^2 :

$$\begin{array}{c|cccc}
 & L & R \\
T & (0,1)^* & (1,0)^* \\
B & (1,0) & (0,1)
\end{array}$$

Theorem

In BM games of type 1, a convex set is either W-approachable or W-excludable.

Theorem (Sorin 1982, unpublished)

In BM games of type 1, there are convex sets that are neither uniformly approachable, nor uniformly excludable.

Sorin example lies in \mathbb{R}^2 :

$$\begin{array}{c|cccc}
 & L & R \\
T & (0,1)^* & (1,0)^* \\
B & (1,0) & (0,1)
\end{array}$$

The set $C = \{(x,y) : x \ge \frac{3}{8}, y \ge \frac{3}{8}\}$ is neither uniformly approchable nor uniformly excludable.

Introduction to Blackwell Approachability Definitions and Notati Generalized Quitting Games Application to Big Match Type 1

Approachability in Big Match of Type 2

Theorem

Condition 1 and Condition 2 are not necessary for weak approachability in BM games of type 2.

Theorem

Condition 1 and Condition 2 are not necessary for weak approachability in BM games of type 2.

Recall that Condition 1 is sufficient and condition 3 is necessary for W-approachability.

Theorem

Condition 1 and Condition 2 are not necessary for weak approachability in BM games of type 2.

Recall that Condition 1 is sufficient and condition 3 is necessary for W-approachability.

Theorem

Condition 1 is necessary and sufficient for uniform approachability in BM games of type 2.

Theorem

Condition 1 and Condition 2 are not necessary for weak approachability in BM games of type 2.

Recall that Condition 1 is sufficient and condition 3 is necessary for W-approachability.

Theorem

Condition 1 is necessary and sufficient for uniform approachability in BM games of type 2.

Lemma

In Big-Match games of type II, SC (condition 1) is equivalent to

$$\forall y \in \Delta(\mathcal{J}), \exists x \in \Delta(\mathcal{I}), g(x, y) \in \mathcal{C} \text{ and } g(x, j^*) \in \mathcal{C}, \forall j^* \in \mathcal{J}^*$$

Theorem

Condition 1 and Condition 2 are not necessary for weak approachability in BM games of type 2.

Recall that Condition 1 is sufficient and condition 3 is necessary for W-approachability.

Theorem

Condition 1 is necessary and sufficient for uniform approachability in BM games of type 2.

Lemma

In Big-Match games of type II, SC (condition 1) is equivalent to

$$\forall y \in \Delta(\mathcal{J}), \exists x \in \Delta(\mathcal{I}), g(x, y) \in \mathcal{C} \text{ and } g(x, j^*) \in \mathcal{C}, \forall j^* \in \mathcal{J}^*$$

If $y \in \Delta(\mathcal{J})$ is predicted, P1 plays $x \in \Delta(\mathcal{I})$. And this strategy must remain "good" even if player 2 decides to quit the game.

- Introduction to Blackwell Approachability
- Definitions and Notations
- 3 Blackwell Type Conditions
 - Generalized Quitting Games
 - Application to Big Match Type 1
 - Application to Big Match Type 2
- Viability Type Conditions in Big Match of Type 2
 - One absorbing action, one non-absorbing action
 - General Case

• We first restrict to BM games of type 2 where Player has only two actions.

- We first restrict to BM games of type 2 where Player has only two actions.
- ullet R is non-absorbing and L is absorbing.

- We first restrict to BM games of type 2 where Player has only two actions.
- ullet R is non-absorbing and L is absorbing.
- Let g_l^* and g_R denote the corresponding payoff vectors for P1.

- We first restrict to BM games of type 2 where Player has only two actions.
- \bullet R is non-absorbing and L is absorbing.
- Let g_l^* and g_R denote the corresponding payoff vectors for P1.

Theorem

If $\mathcal C$ is weakly approchable, \exists a measurable mapping $\xi:[0,1]\to\Delta(I)$ such that for almost every $t\in[0,1]$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g_L^*(\xi(t)) \in \mathcal{C}.$$

- We first restrict to BM games of type 2 where Player has only two actions.
- \bullet R is non-absorbing and L is absorbing.
- Let g_L^* and g_R denote the corresponding payoff vectors for P1.

Theorem

If $\mathcal C$ is weakly approchable, \exists a measurable mapping $\xi:[0,1]\to\Delta(I)$ such that for almost every $t\in[0,1]$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g_L^*(\xi(t)) \in \mathcal{C}.$$

• $\forall \varepsilon > 0$, $\exists N_{\varepsilon}$, s.t. $\forall N \geq N_{\varepsilon}$, $\exists \{x^{N,\varepsilon}(k), k = 1, ..., N\}$, s.t. $\forall t \in [0, 1]$:

$$\sum_{k=1}^{[Nt]} \frac{g_R(x^{N,\varepsilon}(k))}{N} + (1 - \frac{[Nt]}{N})g_L^*(x^{N,\varepsilon}([Nt]+1)) \in \mathcal{C} + \varepsilon \mathcal{B}(0,1),$$

- We first restrict to BM games of type 2 where Player has only two actions.
- R is non-absorbing and L is absorbing.
- Let g_l^* and g_R denote the corresponding payoff vectors for P1.

Theorem

If C is weakly approchable, \exists a measurable mapping $\xi:[0,1]\to\Delta(1)$ such that for almost every $t\in[0,1]$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g_L^*(\xi(t)) \in \mathcal{C}.$$

• $\forall \varepsilon > 0$, $\exists N_{\varepsilon}$, s.t. $\forall N \geq N_{\varepsilon}$, $\exists \{x^{N,\varepsilon}(k), k = 1, ..., N\}$, s.t. $\forall t \in [0, 1]$:

$$\sum_{k=1}^{[Nt]} \frac{g_R(x^{N,\varepsilon}(k))}{N} + (1 - \frac{[Nt]}{N})g_L^*(x^{N,\varepsilon}([Nt]+1)) \in \mathcal{C} + \varepsilon \mathcal{B}(0,1),$$

• Defining $\xi^{N,\varepsilon}(s) = x^{N,\varepsilon}([sN]+1)$, we obtain that $\forall t \in [0,1]$:

$$\int_0^t g_R(\xi^{N,\varepsilon}(s))ds + (1 - \frac{[Nt]}{N})g_L^*(\xi^{N,\varepsilon}(t)) \in \mathcal{C} + \varepsilon \mathcal{B}(0,1)$$

- We first restrict to BM games of type 2 where Player has only two actions.
- R is non-absorbing and L is absorbing.
- Let g_l^* and g_R denote the corresponding payoff vectors for P1.

Theorem

If C is weakly approchable, \exists a measurable mapping $\xi:[0,1]\to\Delta(1)$ such that for almost every $t\in[0,1]$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g_L^*(\xi(t)) \in \mathcal{C}.$$

• $\forall \varepsilon > 0$, $\exists N_{\varepsilon}$, s.t. $\forall N \geq N_{\varepsilon}$, $\exists \{x^{N,\varepsilon}(k), k = 1, ..., N\}$, s.t. $\forall t \in [0, 1]$:

$$\sum_{k=1}^{[Nt]} \frac{g_R(x^{N,\varepsilon}(k))}{N} + (1 - \frac{[Nt]}{N})g_L^*(x^{N,\varepsilon}([Nt]+1)) \in \mathcal{C} + \varepsilon \mathcal{B}(0,1),$$

• Defining $\xi^{N,\varepsilon}(s) = x^{N,\varepsilon}([sN]+1)$, we obtain that $\forall t \in [0,1]$:

$$\int_0^t g_R(\xi^{N,\varepsilon}(s))ds + (1 - \frac{[Nt]}{N})g_L^*(\xi^{N,\varepsilon}(t)) \in \mathcal{C} + \varepsilon \mathcal{B}(0,1)$$

• We tend N to infinity and ε to zero.

Theorem

If there is a continuous mapping $\xi:[0,1]\to\Delta(I)$ such that for every $t\in[0,1]$,

$$\int_0^t g_{\mathcal{R}}(\xi(s))ds + (1-t)g_{\mathcal{L}}^*(\xi(t)) \in \mathcal{C},$$

then C is weakly approchable.

Theorem

If there is a continuous mapping $\xi:[0,1]\to\Delta(I)$ such that for every $t\in[0,1]$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g_L^*(\xi(t)) \in \mathcal{C},$$

then C is weakly approchable.

• For any $\varepsilon > 0$, let N_{ε} s.t. $\forall N \geq N_{\varepsilon}$ and $\forall s$ and $\forall t$: if $|s - t| \leq \frac{1}{N}$ then $||\xi(s) - \xi(t)||_1 \leq \frac{\varepsilon}{M}$.

Theorem

If there is a continuous mapping $\xi:[0,1]\to\Delta(I)$ such that for every $t\in[0,1]$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g_L^*(\xi(t)) \in \mathcal{C},$$

then C is weakly approchable.

- For any $\varepsilon > 0$, let N_{ε} s.t. $\forall N \geq N_{\varepsilon}$ and $\forall s$ and $\forall t$: if $|s t| \leq \frac{1}{N}$ then $||\xi(s) \xi(t)||_1 \leq \frac{\varepsilon}{M}$.
- Define $x^N(k) = \xi(\frac{k}{N})$, then $\forall K \in \mathbb{N}^*$:

$$\sum_{k=1}^K \frac{g_R(x^N(k))}{N} + (1 - \frac{K}{N})g_L^*(x^N(K+1)) \in \mathcal{C} + \varepsilon$$

Theorem

If there is a continuous mapping $\xi:[0,1]\to\Delta(\mathbf{I})$ such that for every $t\in[0,1]$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g_L^*(\xi(t)) \in \mathcal{C},$$

then C is weakly approchable.

- For any $\varepsilon > 0$, let N_{ε} s.t. $\forall N \geq N_{\varepsilon}$ and $\forall s$ and $\forall t$: if $|s t| \leq \frac{1}{N}$ then $||\xi(s) \xi(t)||_1 \leq \frac{\varepsilon}{M}$.
- Define $x^N(k) = \xi(\frac{k}{N})$, then $\forall K \in \mathbb{N}^*$:

$$\sum_{k=1}^{K} \frac{g_{R}(x^{N}(k))}{N} + (1 - \frac{K}{N})g_{L}^{*}(x^{N}(K+1)) \in \mathcal{C} + \varepsilon$$

• Now we divide each time interval of length 1/N on a large block of length L in which player 1 plays an i.i.d strategies $\xi(s)$.

Theorem

If there is a continuous mapping $\xi:[0,1]\to\Delta(I)$ such that for every $t\in[0,1]$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g_L^*(\xi(t)) \in \mathcal{C},$$

then C is weakly approchable.

- For any $\varepsilon > 0$, let N_{ε} s.t. $\forall N \geq N_{\varepsilon}$ and $\forall s$ and $\forall t$: if $|s t| \leq \frac{1}{N}$ then $||\xi(s) \xi(t)||_1 \leq \frac{\varepsilon}{M}$.
- Define $x^N(k) = \xi(\frac{k}{N})$, then $\forall K \in \mathbb{N}^*$:

$$\sum_{k=1}^K \frac{g_R(x^N(k))}{N} + (1 - \frac{K}{N})g_L^*(x^N(K+1)) \in \mathcal{C} + \varepsilon$$

- Now we divide each time interval of length 1/N on a large block of length L in which player 1 plays an i.i.d strategies $\xi(s)$.
- By the law of large numbers, on the block L, the average payoff if player 2 plays always R is $g_R(\xi(s))$.

For each $p \ge 1$, let us show that player 1 can weakly approach $\{0\}$ in the following game (not satisfying Condition 2):

For each $p \ge 1$, let us show that player 1 can weakly approach $\{0\}$ in the following game (not satisfying Condition 2):

	L	R
Т	1*	р
В	0*	-1

For each $p \ge 1$, let us show that player 1 can weakly approach $\{0\}$ in the following game (not satisfying Condition 2):

	L	R
Т	1*	р
В	0*	-1

• Find a C^1 function ξ (where $\xi(s)$ = proba of T at time s) s.t. $\forall t$:

$$\int_0^t (\xi(s)p - (1 - \xi(s))ds + (1 - t)\xi(t) = 0,$$

For each $p \ge 1$, let us show that player 1 can weakly approach $\{0\}$ in the following game (not satisfying Condition 2):

$$\begin{array}{c|cccc} & L & R \\ T & 1^* & p \\ B & 0^* & -1 \end{array}$$

• Find a C^1 function ξ (where $\xi(s)$ = proba of T at time s) s.t. $\forall t$:

$$\int_0^t (\xi(s)p - (1 - \xi(s))ds + (1 - t)\xi(t) = 0,$$

• This is equivalent to $\xi(0) = 0$ and for every t:

$$\xi(t)(p+1) - 1 - \xi(t) + (1-t)\frac{d\xi(t)}{dt} = 0,$$

For each $p \ge 1$, let us show that player 1 can weakly approach $\{0\}$ in the following game (not satisfying Condition 2):

• Find a C^1 function ξ (where $\xi(s)$ = proba of T at time s) s.t. $\forall t$:

$$\int_0^t (\xi(s)p - (1 - \xi(s))ds + (1 - t)\xi(t) = 0,$$

• This is equivalent to $\xi(0) = 0$ and for every t:

$$\xi(t)(p+1)-1-\xi(t)+(1-t)\frac{d\xi(t)}{dt}=0,$$

• Which has a unique solution $\xi(t) = \frac{1}{p}(1 - (1-t)^p)$ or:

$$(1-t)^{p}\mathsf{B}+(1-(1-t)^{p})(rac{1}{p}\mathsf{T}+(1-rac{1}{p})\mathsf{B}),$$

For each $p \ge 1$, let us show that player 1 can weakly approach $\{0\}$ in the following game (not satisfying Condition 2):

	L	R
Т	1*	р
В	0*	-1

• Find a C^1 function ξ (where $\xi(s)$ = proba of T at time s) s.t. $\forall t$:

$$\int_0^t (\xi(s)p - (1 - \xi(s))ds + (1 - t)\xi(t) = 0,$$

• This is equivalent to $\xi(0) = 0$ and for every t:

$$\xi(t)(p+1)-1-\xi(t)+(1-t)\frac{d\xi(t)}{dt}=0,$$

• Which has a unique solution $\xi(t) = \frac{1}{p}(1 - (1-t)^p)$ or:

$$(1-t)^{\rho}\mathbf{B}+(1-(1-t)^{\rho})(\frac{1}{\rho}\mathbf{T}+(1-\frac{1}{\rho})\mathbf{B}),$$

• That is, player 1 starts at $x_0 = \mathbf{B}$ and then, with time, he increases slightly the probability of \mathbf{T} until reaching $x_1 = \frac{1}{a}\mathbf{T} + (1 - \frac{1}{a})\mathbf{B}$.

For each $p \ge 1$, let us show that player 1 can weakly approach $\{0\}$ in the following game (not satisfying Condition 2):

	L	R
Т	1*	р
В	0*	-1

• Find a C^1 function ξ (where $\xi(s)$ = proba of T at time s) s.t. $\forall t$:

$$\int_0^t (\xi(s)p - (1 - \xi(s))ds + (1 - t)\xi(t) = 0,$$

• This is equivalent to $\xi(0) = 0$ and for every t:

$$\xi(t)(p+1)-1-\xi(t)+(1-t)\frac{d\xi(t)}{dt}=0,$$

• Which has a unique solution $\xi(t) = \frac{1}{p}(1 - (1-t)^p)$ or:

$$(1-t)^{\rho}\mathbf{B}+(1-(1-t)^{\rho})(\frac{1}{\rho}\mathbf{T}+(1-\frac{1}{\rho})\mathbf{B}),$$

- That is, player 1 starts at $x_0 = \mathbf{B}$ and then, with time, he increases slightly the probability of \mathbf{T} until reaching $x_1 = \frac{1}{\rho}\mathbf{T} + (1 \frac{1}{\rho})\mathbf{B}$.
- $\{0\}$ is not W-approachable if p < 1 (Condition 2 still not satisfied).

For each $p \ge 1$, let us show that player 1 can weakly approach $\{0\}$ in the following game (not satisfying Condition 2):

	L	R
Т	1*	р
В	0*	-1

• Find a C^1 function ξ (where $\xi(s)$ = proba of T at time s) s.t. $\forall t$:

$$\int_0^t (\xi(s)p - (1 - \xi(s))ds + (1 - t)\xi(t) = 0,$$

• This is equivalent to $\xi(0) = 0$ and for every t:

$$\xi(t)(p+1)-1-\xi(t)+(1-t)\frac{d\xi(t)}{dt}=0,$$

• Which has a unique solution $\xi(t) = \frac{1}{p}(1 - (1-t)^p)$ or:

$$(1-t)^p \mathsf{B} + (1-(1-t)^p)(rac{1}{p}\mathsf{T} + (1-rac{1}{p})\mathsf{B}),$$

- That is, player 1 starts at $x_0 = \mathbf{B}$ and then, with time, he increases slightly the probability of \mathbf{T} until reaching $x_1 = \frac{1}{n}\mathbf{T} + (1 \frac{1}{n})\mathbf{B}$.
- $\{0\}$ is not W-approachable if p < 1 (Condition 2 still not satisfied).
- Condition 2 is not necessary nor sufficient for W-approachability.

If player 2 has many absorbing actions, but one non-absorbing action R, then:

Theorem

If \exists a continuous mapping $\xi : [0,1] \to \Delta(\mathbf{I})$ such that $\forall t \in [0,1]$ and $\forall j^* \in \mathcal{J}^*$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g^*(\xi(t),j^*) \in \mathcal{C},$$

then C is weakly approchable.

If player 2 has many absorbing actions, but one non-absorbing action R, then:

Theorem

If \exists a continuous mapping $\xi : [0,1] \to \Delta(\mathbf{I})$ such that $\forall t \in [0,1]$ and $\forall j^* \in \mathcal{J}^*$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g^*(\xi(t),j^*) \in \mathcal{C},$$

then C is weakly approchable. Conversely, a measurable function ξ must exist.

If player 2 has many absorbing actions, but one non-absorbing action R, then:

Theorem

If \exists a continuous mapping $\xi : [0,1] \to \Delta(I)$ such that $\forall t \in [0,1]$ and $\forall j^* \in \mathcal{J}^*$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g^*(\xi(t),j^*) \in \mathcal{C},$$

then C is weakly approchable. Conversely, a measurable function ξ must exist.

More generally, let $\mathcal Y$ (resp. $\mathcal X$) be the set of measurable maps from $[0,1] \to \Delta(\mathcal J)$ (resp. $\Delta(\mathcal I)$).

If player 2 has many absorbing actions, but one non-absorbing action R, then:

Theorem

If \exists a continuous mapping $\xi:[0,1]\to\Delta(\mathbf{I})$ such that $\forall t\in[0,1]$ and $\forall j^*\in\mathcal{J}^*$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g^*(\xi(t),j^*) \in \mathcal{C},$$

then C is weakly approchable. Conversely, a measurable function ξ must exist.

More generally, let $\mathcal Y$ (resp. $\mathcal X$) be the set of measurable maps from $[0,1] \to \Delta(\mathcal J)$ (resp. $\Delta(\mathcal I)$).

Theorem

In any BM games type 2, a necessary condition for $\mathcal C$ to be weakly approachable is:

If player 2 has many absorbing actions, but one non-absorbing action R, then:

Theorem

If \exists a continuous mapping $\xi:[0,1]\to\Delta(\mathbf{I})$ such that $\forall t\in[0,1]$ and $\forall j^*\in\mathcal{J}^*$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g^*(\xi(t),j^*) \in \mathcal{C},$$

then C is weakly approchable. Conversely, a measurable function ξ must exist.

More generally, let $\mathcal Y$ (resp. $\mathcal X$) be the set of measurable maps from $[0,1] \to \Delta(\mathcal J)$ (resp. $\Delta(\mathcal I)$).

Theorem

In any BM games type 2, a necessary condition for $\mathcal C$ to be weakly approachable is:

 $\forall \gamma \in \mathcal{Y}$ continuous, $\exists \xi \in \mathcal{X}$ such that $\forall t \in [0,1]$ and $\forall j^* \in \mathcal{J}^*$,

If player 2 has many absorbing actions, but one non-absorbing action R, then:

Theorem

If \exists a continuous mapping $\xi:[0,1]\to\Delta(\mathbf{I})$ such that $\forall t\in[0,1]$ and $\forall j^*\in\mathcal{J}^*$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g^*(\xi(t),j^*) \in \mathcal{C},$$

then C is weakly approchable. Conversely, a measurable function ξ must exist.

More generally, let $\mathcal Y$ (resp. $\mathcal X$) be the set of measurable maps from $[0,1] \to \Delta(\mathcal J)$ (resp. $\Delta(\mathcal I)$).

Theorem

In any BM games type 2, a necessary condition for $\mathcal C$ to be weakly approachable is:

 $\forall \gamma \in \mathcal{Y}$ continuous, $\exists \xi \in \mathcal{X}$ such that $\forall t \in [0,1]$ and $\forall j^* \in \mathcal{J}^*$,

$$\int_0^t g(\xi(s),\gamma(s))ds + (1-t)g^*(\xi(t),j^*) \in \mathcal{C}.$$

Extensions

If player 2 has many absorbing actions, but one non-absorbing action R, then:

Theorem

If \exists a continuous mapping $\xi : [0,1] \to \Delta(I)$ such that $\forall t \in [0,1]$ and $\forall j^* \in \mathcal{J}^*$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g^*(\xi(t),j^*) \in \mathcal{C},$$

then C is weakly approchable. Conversely, a measurable function ξ must exist.

More generally, let $\mathcal Y$ (resp. $\mathcal X$) be the set of measurable maps from $[0,1] \to \Delta(\mathcal J)$ (resp. $\Delta(\mathcal I)$).

Theorem

In any BM games type 2, a necessary condition for $\mathcal C$ to be weakly approachable is:

 $\forall \gamma \in \mathcal{Y}$ continuous, $\exists \xi \in \mathcal{X}$ such that $\forall t \in [0,1]$ and $\forall j^* \in \mathcal{J}^*$,

$$\int_0^t g(\xi(s), \gamma(s)) ds + (1-t)g^*(\xi(t), j^*) \in \mathcal{C}.$$

Introduction to Blackwell Approachability Definitions and Notati One absorbing action, one non-absorbing action General Case

Extensions

If player 2 has many absorbing actions, but one non-absorbing action R, then:

Theorem

If \exists a continuous mapping $\xi:[0,1]\to\Delta(\mathbf{I})$ such that $\forall t\in[0,1]$ and $\forall j^*\in\mathcal{J}^*$,

$$\int_0^t g_R(\xi(s))ds + (1-t)g^*(\xi(t),j^*) \in \mathcal{C},$$

then C is weakly approchable. Conversely, a measurable function ξ must exist.

More generally, let $\mathcal Y$ (resp. $\mathcal X$) be the set of measurable maps from $[0,1] \to \Delta(\mathcal J)$ (resp. $\Delta(\mathcal I)$).

Theorem

In any BM games type 2, a necessary condition for $\mathcal C$ to be weakly approachable is:

 $\forall \gamma \in \mathcal{Y}$ continuous, $\exists \xi \in \mathcal{X}$ such that $\forall t \in [0,1]$ and $\forall j^* \in \mathcal{J}^*$,

$$\int_0^t g(\xi(s), \frac{\gamma(s)}{\gamma(s)}) ds + (1-t)g^*(\xi(t), j^*) \in \mathcal{C}.$$

Without absorption, this is Vieille's differential game characterization for W-approachability.

For any generalized quitting game, and in particular big match games:

• Condition 1 is necessary, condition 3 is sufficient for weak approachability.

For any generalized quitting game, and in particular big match games:

Condition 1 is necessary, condition 3 is sufficient for weak approachability.

For any generalized quitting game, and in particular big match games:

Condition 1 is necessary, condition 3 is sufficient for weak approachability.

For BM games of type 1, weak approachability is simpler:

• Condition 1 = Condition 2 = Condition 3 = Blackwell condition.

For any generalized quitting game, and in particular big match games:

• Condition 1 is necessary, condition 3 is sufficient for weak approachability.

- Condition 1 = Condition 2 = Condition 3 = Blackwell condition.
- Condition 1 is necessary and sufficient for weak approachability.

For any generalized quitting game, and in particular big match games:

• Condition 1 is necessary, condition 3 is sufficient for weak approachability.

- Condition 1 = Condition 2 = Condition 3 = Blackwell condition.
- Condition 1 is necessary and sufficient for weak approachability.
- Condition 1 is not sufficient for uniform approachability.

For any generalized quitting game, and in particular big match games:

• Condition 1 is necessary, condition 3 is sufficient for weak approachability.

- Condition 1 = Condition 2 = Condition 3 = Blackwell condition.
- Condition 1 is necessary and sufficient for weak approachability.
- Condition 1 is not sufficient for uniform approachability.
- The tight condition for uniform approachability is very tricky (see Sorin 1984 construction of the optimal strategy of the non informed player).

For any generalized quitting game, and in particular big match games:

• Condition 1 is necessary, condition 3 is sufficient for weak approachability.

- Condition 1 = Condition 2 = Condition 3 = Blackwell condition.
- Condition 1 is necessary and sufficient for weak approachability.
- Condition 1 is not sufficient for uniform approachability.
- The tight condition for uniform approachability is very tricky (see Sorin 1984 construction of the optimal strategy of the non informed player).
- Any convex sets is either weakly approachable or weakly excludable.

For any generalized quitting game, and in particular big match games:

• Condition 1 is necessary, condition 3 is sufficient for weak approachability.

- Condition 1 = Condition 2 = Condition 3 = Blackwell condition.
- Condition 1 is necessary and sufficient for weak approachability.
- Condition 1 is not sufficient for uniform approachability.
- The tight condition for uniform approachability is very tricky (see Sorin 1984 construction of the optimal strategy of the non informed player).
- Any convex sets is either weakly approachable or weakly excludable.
- There are convex sets that are neither uniformly approachable nor uniformly excludable (Sorin 1982).

For any generalized quitting game, and in particular big match games:

• Condition 1 is necessary, condition 3 is sufficient for weak approachability.

For BM games of type 1, weak approachability is simpler:

- Condition 1 = Condition 2 = Condition 3 = Blackwell condition.
- Condition 1 is necessary and sufficient for weak approachability.
- Condition 1 is not sufficient for uniform approachability.
- The tight condition for uniform approachability is very tricky (see Sorin 1984 construction of the optimal strategy of the non informed player).
- Any convex sets is either weakly approachable or weakly excludable.
- There are convex sets that are neither uniformly approachable nor uniformly excludable (Sorin 1982).

For any generalized quitting game, and in particular big match games:

• Condition 1 is necessary, condition 3 is sufficient for weak approachability.

For BM games of type 1, weak approachability is simpler:

- Condition 1 = Condition 2 = Condition 3 = Blackwell condition.
- Condition 1 is necessary and sufficient for weak approachability.
- Condition 1 is not sufficient for uniform approachability.
- The tight condition for uniform approachability is very tricky (see Sorin 1984 construction of the optimal strategy of the non informed player).
- Any convex sets is either weakly approachable or weakly excludable.
- There are convex sets that are neither uniformly approachable nor uniformly excludable (Sorin 1982).

For BM games of type 2, uniform approachability is simpler:

• Condition $1 \neq$ Condition $2 \neq$ Condition 3.

For any generalized quitting game, and in particular big match games:

• Condition 1 is necessary, condition 3 is sufficient for weak approachability.

For BM games of type 1, weak approachability is simpler:

- Condition 1 = Condition 2 = Condition 3 = Blackwell condition.
- Condition 1 is necessary and sufficient for weak approachability.
- Condition 1 is not sufficient for uniform approachability.
- The tight condition for uniform approachability is very tricky (see Sorin 1984 construction of the optimal strategy of the non informed player).
- Any convex sets is either weakly approachable or weakly excludable.
- There are convex sets that are neither uniformly approachable nor uniformly excludable (Sorin 1982).

- Condition $1 \neq \text{Condition } 2 \neq \text{Condition } 3$.
- Condition 2 is neither necessary nor it is sufficient for weak approachability.

Introduction to Blackwell Approachability Definitions and Notat One absorbing action, one non-absorbing action General Case

Conclusion

For any generalized quitting game, and in particular big match games:

• Condition 1 is necessary, condition 3 is sufficient for weak approachability.

For BM games of type 1, weak approachability is simpler:

- Condition 1 = Condition 2 = Condition 3 = Blackwell condition.
- Condition 1 is necessary and sufficient for weak approachability.
- Condition 1 is not sufficient for uniform approachability.
- The tight condition for uniform approachability is very tricky (see Sorin 1984 construction of the optimal strategy of the non informed player).
- Any convex sets is either weakly approachable or weakly excludable.
- There are convex sets that are neither uniformly approachable nor uniformly excludable (Sorin 1982).

- Condition $1 \neq \text{Condition } 2 \neq \text{Condition } 3$.
- Condition 2 is neither necessary nor it is sufficient for weak approachability.
- Condition 1 is necessary and sufficient for uniform approachability.

Introduction to Blackwell Approachability Definitions and Notati One absorbing action, one non-absorbing action General Case

Conclusion

For any generalized quitting game, and in particular big match games:

• Condition 1 is necessary, condition 3 is sufficient for weak approachability.

For BM games of type 1, weak approachability is simpler:

- Condition 1 = Condition 2 = Condition 3 = Blackwell condition.
- Condition 1 is necessary and sufficient for weak approachability.
- Condition 1 is not sufficient for uniform approachability.
- The tight condition for uniform approachability is very tricky (see Sorin 1984 construction of the optimal strategy of the non informed player).
- Any convex sets is either weakly approachable or weakly excludable.
- There are convex sets that are neither uniformly approachable nor uniformly excludable (Sorin 1982).

- Condition $1 \neq \text{Condition } 2 \neq \text{Condition } 3$.
- Condition 2 is neither necessary nor it is sufficient for weak approachability.
- Condition 1 is necessary and sufficient for uniform approachability.
- The tight condition for weak approachability is tricky (viability tools).

Theorem

Thanks to the organizers. It is impossible to do a better conference!